location: Current position: Home >> Scientific Research >> Paper Publications

Meshless Local Petrov-Galerkin Mixed Collocation Method for Solving Cauchy Inverse Problems of Steady-State Heat Transfer

Hits:

Indexed by:期刊论文

Date of Publication:2014-02-01

Journal:CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES

Included Journals:SCIE、EI、Scopus

Volume:97

Issue:6

Page Number:509-533

ISSN No.:1526-1492

Key Words:MLPG; Collocation; heat transfer; inverse problem

Abstract:In this article, the Mesh less Local Petrov-Galerkin (MLPG) Mixed Collocation Method is developed to solve the Cauchy inverse problems of Steady-State Heat Transfer In the MLPG mixed collocation method, the mixed scheme is applied to independently interpolate temperature as well as heat flux using the same meshless basis functions The balance and compatibility equations are satisfied at each node in a strong sense using the collocation method. The boundary conditions are also enforced using the collocation method, allowing temperature and heat flux to be over-specified at the same portion of the boundary. For the inverse problems where noise is present in the measurement, Tikhonov regularization method is used, to mitigate the inherent ill-posed nature of inverse problem, with its regularization parameter determined by the L-Curve method. Several numerical examples are given, wherein both temperature as well as heat flux are prescribed at part of the boundary, and the data at the other part of the boundary and in the domain have to be solved for. Through these numerical examples, we investigate the accuracy, convergence, and stability of the proposed MLPG mixed collocation method for solving inverse problems of Heat Transfer.

Pre One:On the use of cyclic symmetry in SBFEM for heat transfer problems

Next One:Use of Fourier shape functions in the scald boundary method