个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连化物所
学位:博士
所在单位:物理学院
学科:凝聚态物理
办公地点:物理学院401室
电子邮箱:su.yan@dlut.edu.cn
Energetic potential of hexogen constructed by machine learning
点击次数:
论文类型:期刊论文
发表时间:2021-02-02
发表刊物:ACTA PHYSICA SINICA
卷号:69
期号:23
ISSN号:1000-3290
关键字:energetic material; neural networks; potential function; molecular dynamics
摘要:1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) or hexogen, a high-insensitivity explosive, the accurately description of its energy and properties is of fundamental significance in the sense of security and application. Based on the machine learning method, high-dimensional neural network is used to construct potential function of RDX crystal. In order to acquire enough data in neural network learning, based on the four known crystal phases of RDX, the structural global search is performed under different spatial groups to obtain 15199 structure databases. Here in this study, we use nearby atomic environment to build 72 different basis functions as input neurons, in which the 72 different basis functions represent the interaction with nearby atoms for each type of element. Among them, 90% data are randomly set as training set, and the remaining 10% data are taken as test set. To obtain the better training effect, 9 different neural network structures carry out 2000 step iterations at most, thereby the 30-30-10 hidden layer structure has the lower root mean square error (RMSE) after the 1847 iterations compared with the energies from first-principles calculations. Thus, the potential function fitted by 30-30-10 hidden layer network is chosen in subsequent calculations. This constructed potential function can reproduce the first-principles results of test set well, with the RMSE of 59.2 meV/atom for binding energy and 7.17 eV/angstrom for atomic force. Especially, the RMSE of the four known RDX crystal phases from 1 atm to 6 GPa are 10.0 meV/atom and 1.11 eV/angstrom for binding energy and atomic force, respectively, indicating that the potential function has a better description of the known structures. Furthermore, we also propose four additional RDX crystal phases with lower enthalpy, which may be alternative crystal phases undetermined in experiment. In addition, based on molecular dynamics simulation with this potential function, the alpha-phase RDX crystal can stay stable for a few ps, further proving the applicability of our constructed potential function.