• 更多栏目

    孙亮

    • 副教授       硕士生导师
    • 性别:男
    • 毕业院校:吉林大学
    • 学位:博士
    • 所在单位:计算机科学与技术学院
    • 学科:计算机应用技术
    • 办公地点:创新园大厦B802
    • 联系方式:15998564404
    • 电子邮箱:liangsun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Convergent stochastic differential evolution algorithms

    点击次数:

    论文类型:期刊论文

    发表时间:2016-01-01

    发表刊物:International Journal of Hybrid Information Technology

    收录刊物:EI

    卷号:9

    期号:7

    页面范围:191-206

    ISSN号:17389968

    摘要:Differential evolution (DE) algorithms have been extensively and frequently applied to solve optimizationproblems. Theoretical analyses of their properties are important to understand the underlying mechanismsand to develop more efficient algorithms. In this paper, firstly, we introduce an absorbing Markovsequence to model a DE algorithm. Secondly, we propose and prove two theorems that provide sufficientconditions for DE algorithm to guarantee converging to the global optimality region. Finally, we design two DE algorithms that satisfy the preconditions of the two theorems, respectively. The two proposed algorithmsare tested on the CEC2013 benchmark functions, and compared with other existing algorithms.Numerical simulations illustrate the converge, effectiveness and usefulness of the proposed algorithms. © 2016 SERSC.