• 更多栏目

    孙亮

    • 副教授       硕士生导师
    • 性别:男
    • 毕业院校:吉林大学
    • 学位:博士
    • 所在单位:计算机科学与技术学院
    • 学科:计算机应用技术
    • 办公地点:创新园大厦B802
    • 联系方式:15998564404
    • 电子邮箱:liangsun@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    EEG signal classification for epilepsy diagnosis based on AR model and RVM

    点击次数:

    论文类型:会议论文

    发表时间:2010-01-01

    收录刊物:EI、Scopus

    期号:PART 2

    页面范围:134-139

    摘要:In this article, we propose a new EEG signal classification method based on Relevance Vector Machine (RVM) and AR model. It can well separate the ictal EEG signals from the inter-ictal ones, this is very important in the diagnosis of epilepsy. Our studies can be divided into three parts: firstly, EEG features were extracted from the signals based on AR models, and then the performance of these features was evaluated; secondly, according to the performance of the features, feature selection was introduced between feature extraction and classifiers; finally, RVM was implemented with different AR models, different kernel widths, and different subsets of the features in order to get an overview of the method. The results indicate that: (1) features extracted based on AR models can well represent the EEG signals in the task of EEG signal classification for epilepsy diagnosis; (2) feature selection is needed between feature extraction and classifiers; (3) the method based on RVM and AR model can well differentiate the two types of EEG signals. ? 2010 IEEE.