• 其他栏目

    孙亮

    • 副教授     硕士生导师
    • 性别:男
    • 毕业院校:吉林大学
    • 学位:博士
    • 所在单位:计算机科学与技术学院
    • 学科:计算机应用技术
    • 办公地点:创新园大厦B802
    • 联系方式:
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    A Selective Ensemble Learning Framework for ECG-Based Heartbeat Classification with Imbalanced Data

    点击次数:

      发布时间:2019-07-01

      论文类型:会议论文

      发表时间:2018-01-01

      收录刊物:CPCI-S

      页面范围:2753-2755

      摘要:ECG-based heartbeat classification is often accompanied with difficult feature extraction and imbalanced sampling data. In order to alleviate the bias in performance caused by imbalanced data, a Selective Ensemble Learning Framework based on sample Distribution and classifier Diversity (SELFrame-DD) is proposed for ECG-based heartbeat classification. In SELFrame-DD, an improved SMOTE algorithm is proposed to generate training sets by using a sample-distribution based resampling strategy, and the selective ensemble depends on the diversity of classifiers and the prediction accuracy of classifiers for minority classes. Besides, a multimodal ECG feature extraction is employed based on wavelet packet decomposition and 1-D convolutional neural network. Experimental studies on MIT-BIH arrhythmia database show that the proposed algorithm can achieve a high classification accuracy for imbalanced multi-category classification.