个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:清华大学
学位:博士
所在单位:化学学院
学科:物理化学. 材料物理与化学. 无机化学
办公地点:西部校区化工综合楼C313
联系方式:0411-84986237
电子邮箱:shiyantao@dlut.edu.cn
ZIF-67 Derived Nanostructures of Co/CoO and Co@N-doped Graphitic Carbon as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells
点击次数:
论文类型:期刊论文
发表时间:2016-09-20
发表刊物:ELECTROCHIMICA ACTA
收录刊物:SCIE、EI、CPCI-S、Scopus
卷号:213
页面范围:252-259
ISSN号:0013-4686
关键字:Dye-sensitized solar cells; Counter electrode; ZIF-67 derived catalysts; One-step carbonization; Photovoltaic performance
摘要:In this work, a facile one-step approach is reported for using ZIF-67 as a sacrificial template in the synthesis of a counter electrode (CE) catalyst for dye-sensitized solar cells (DSCs). Porous nanocomposites of Co, CoO and N-doped graphitic carbon were synthesized by controlling the carbonization temperature of the templates in a N-2 atmosphere. The characterization of the structure of the products indicated that cobalt nanoparticles were embedded in an N-doped graphitic carbon matrix, (a core-shell structure termed Co@NGC) while cobalt and cobalt oxide nanoparticles were exposed on the external surface of the carbon (termed Co/CoO). In particular, the chemical stability of the nanostructure of the Co@NGC was superior to Co/CoO with respect to etching by strong acids such as hydrochloric acid (HCl, 0.1 M). The DSC performance of ZIF-67-850 (pyrolyzed at 850 degrees C) employed as a CE resulted in a photoelectric conversion efficiency (PCE) of 7.92%, which was close to a Pt CE (8.18%) in the liquid I-3 /I redox couple electrolyte. The excellent performance of ZIF-67-850 can be attributed to the synergetic effects between the Co and CoO coupled with the nitrogen doped graphitic carbon. The cost-effective porous Co/CoO and Co@NGC nanocomposites exhibit great potential for application as high performance CE in solar cells. (C) 2016 Elsevier Ltd. All rights reserved.