Hits:
Indexed by:期刊论文
Date of Publication:2015-05-25
Journal:泰山学院学报
Volume:37
Issue:3
Page Number:18-22
ISSN No.:1672-2590
Key Words:文本相似度算法;TF-IDF方法;词语关联;马尔可夫模型;文本分类
Abstract:传统的文本相似度算法采用关键词频率表示该关键词在文档中的重要程度,关键词在类别内不同文档中的频率波动使得关键词的权值产生不稳定性,导致文本之间的相似度运算不够准确.本文提出一种基于词语信息量的改进的TF-IDF算法计算关键词的权值,将得到的权值运用于向量空间模型和马尔可夫模型中,分别得到基于向量空间模型的基础相似度和基于马尔可夫模型的语义相似度,将语义相似度和基础相似度相结合,得到文本之间总体相似度.将改进的文本相似度算法运用于文本分类,实验结果表明,在搜狗文本分类语料库基础上,改进的算法相对于传统的文本相似度算法使得文本分类的准确率有了较大地提高.