王文渊
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Gender:Female
Alma Mater:大连理工大学
Degree:Doctoral Degree
School/Department:水利工程系
Discipline:Port, Coastal and Offshore Engineering
Business Address:综合实验3#楼407室
Contact Information:0411-84707174
E-Mail:wangwenyuan@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2018-03-01
Journal:JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING
Included Journals:SCIE、EI、Scopus
Volume:144
Issue:2
ISSN No.:0733-950X
Key Words:Scaled boundary finite-element method (SBFEM); Longitudinal sloshing; Elliptical tanks; Complex baffles; Continued-fraction expansion
Abstract:Assuming that an ideal liquid has irrotational, incompressible, and inviscid flows, a mathematical model is presented to efficiently and simply study liquid sloshing problems under longitudinal excitation in horizontal cylindrical containers with complex baffles. A semianalytical scaled boundary finite-element method (SBFEM) is combined with the zoning technique to solve the liquid sloshing problem. This method can significantly increase the efficiency and accuracy of the calculation using few nodes. Using scaled boundary coordinates with both radial and circumferential directions, the analytical solution in the radial direction can be obtained through approximation in the circumferential direction via a discretization technique similar to that used in the FEM. Thus, the entire calculation domain can be analyzed based on the problem boundary. Continued-fraction expansion is applied to build the eigenvalue problem, and the interior eigenvectors are solved by using asymptotic expansion in detail. Based on the previously mentioned decomposition and eigenvalue problem, the corresponding sloshing mass and motion equations are proposed by an efficient methodology. The simplicity and efficiency of SBFEM applied to sloshing problems with different baffles are obtained through numerical examples. This paper investigates the effects of the arrangement and length of different baffles and liquid fill levels on the sloshing frequencies, modes, and response. The conclusions illustrate that SBFEM can easily and semianalytically achieve good results for complex sloshing problems with singularity and complex geometry by placing the scaling centers at the tip of the baffles with very few degrees of freedom. (C) 2017 American Society of Civil Engineers.
大连理工大学港航与海洋工程学院副院长,教育部“长江学者奖励计划”青年学者。
2006年本科毕业于大连理工大学港口航道与海岸工程专业。2008、2012年硕士及博士毕业于大连理工大学港口、海岸及近海工程专业,2012-2014年在大连理工大学土木工程博士后流动站工作(师资博士后),2012年1月,留校工作。2017年入选辽宁省百千万人才工程,大连市青年科技之星,获中国路桥奖教金。2018年破格遴选为博士生导师。2019年入选大连理工大学“星海优青”。2020年获教育部霍英东青年教师奖。
作为首席负责人,主持科技部2021年国家重点研发计划《绿色港口建设与生态安全保障技术》项目(7450万元),主持国家自然科学基金3项,以及科技部、交通部、工信部等各类国家级、省部级纵向课题20余项、横向课题100余项。
主要从事于绿色港口空间规划、港口生产系统智能调度、生态型港口水工结构等领域教学研究工作,研究成果获得中国港口协会科学技术奖一等奖和中国水运建设行业协会科学技术奖二等奖等多项奖励。相关研究成果发表在《Ocean Engineering》、《Applied Ocean Research》、《Journal of Cleaner Production》、《Ocean & Coastal Management》、《Journal of Navigation》、《Journal of Waterway Port Coastal and Ocean Engineering》、《Journal of Pressure Vessel Technology》、《International Journal of Mechanical Sciences》、《Simulation: Transactions of the Society for Modeling and Simulation International》、《交通运输工程学报》、《哈尔滨工程大学学报》、《水运工程》、《水道港口》等国内外知名刊物上。