个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
学科:应用化学. 精细化工
办公地点:E-330
联系方式:wmren@dlut.edu.cn
电子邮箱:wmren@dlut.edu.cn
Crystalline Polythiocarbonate from Stereoregular Copolymerization of Carbonyl Sulfide and Epichlorohydrin
点击次数:
论文类型:期刊论文
发表时间:2016-04-26
发表刊物:MACROMOLECULES
收录刊物:SCIE、EI
卷号:49
期号:8
页面范围:2971-2976
ISSN号:0024-9297
摘要:Carbonyl sulfide (COS) as a carbon source for copolymerization with epoxides has recently received some attention. The introduction of sulfur atom can provide enhancement of important polymer properties compared to the corresponding copolymer from CO2. However, the synthesized copolymers are all amorphous, therefore hindering them to be used as structural materials. Herein, we report the synthesis and characterization of semicrystalline poly(thiocarbonate)s derived from enantiopure epichlorohydrin and COS employing the single-site bifunctional catalyst. The catalyst shows excellent regioselectivity for epichlorohydrin ring-opening at methylene carbon. The copolymerization mechanism has been studied by means of NMR and ESI-MS methods. It is found the reaction temperature plays an important role in the crystallization behavior of the resultant copolymers. That is, at ambient temperature the propagating monothiocarboxylate species favors the nucleophilic attack at the chloromethylene of epichlorohydrin to form an epoxy ring end group, along with the release of chloride ion as a new initiator. This chain termination results in low molecular weight and board distributed copolymers, in accordance with the amorphousness. Alternatively, at reduced temperature such as -25 degrees C, the monothiocarboxylate species prefers consecutive alternating enchainment of COS and epichlorohydrin to give copolymers with enhanced molecular weights. Of importance, the formed polymer is a typical semicrystalline thermoplastic, possessing a T-g of 15.6 degrees C and a T-m of 96.7 degrees C.