教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 化工学院
学科: 精细化工
办公地点: 大连理工大学西部校区E-226
联系方式: 0411-84986304
电子邮箱: dujj@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2019-01-21
发表刊物: JOURNAL OF MATERIALS CHEMISTRY B
收录刊物: SCIE、Scopus
卷号: 7
期号: 3
页面范围: 408-414
ISSN号: 2050-750X
关键字: Mammals; Photons; Probes; Tissue, Deep tissue imaging; Emission wavelength; Fluorescence signals; Fluorescent probes; High selectivity; Red fluorescence; Red-light emission; Tissue penetrations, Fluorescence
摘要: The overexpression of nitroreductase (NTR) in hypoxia has been recognized as a biomarker of highly aggressive disease, and the development of a hypoxia-sensitive two-photon (TP) bioimaging probe with both excitation and emission wavelengths in the red-light region provides favorable deep-tissue imaging with a low background fluorescence signal. Although quite a few TP hypoxia-sensitive fluorescent probes have been reported for NTR detection, their short emission wavelength (o550 nm) limits their application. Herein, we report a red light emissive TP hypoxia-sensitive turn-on probe (NRP) by employing Nile Red as a red-emitting fluorophore and p-nitrobenzene as an NTR recognition group with improved sensitivity. The NRP probe showed obvious strong red-fluorescence enhancement in the presence of NTR and high selectivity toward NTR in aqueous solution. Our in vitro experimental results illustrated that the NRP loaded tumor cells treated under hypoxia display remarkably strong fluorescence in both OP and TP microscopy at 655 nm with 45-fold enhancement, which affords deep-tissue penetration ability. The NRP probe was also successfully applied for imaging NTR in liver tissue slices and a 4T1-bearing mice model, which is important for bioimaging applications.