location: Current position: Home >> Scientific Research >> Paper Publications

Flow dynamics in transient heat transfer of n-decane at supercritical pressure

Hits:

Indexed by:期刊论文

Date of Publication:2017-12-01

Journal:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

Included Journals:Scopus、SCIE、EI

Volume:115

Page Number:206-215

ISSN No.:0017-9310

Key Words:Regenerative cooling; Transient response; Thermoacoustic wave; Pressure oscillation; Transient convection

Abstract:Turbulent heat transfer of hydrocarbon fuel at supercritical pressure plays a crucial role in regenerative cooling of aerospace propulsion systems. In this paper, flow dynamics in transient heat transfer of n-decane at a supercritical pressure of 5 MPa has been numerically investigated, focusing on the effects of a number of key influential parameters, including the surface heat flux, surface heating rate, cooling tube length, and inlet flow velocity, on the transient responding behaviors. Results indicate that the transient responding process is dictated by two fundamental mechanisms: the initial thermoacoustic oscillation, which is caused by strong fluid thermal expansion, and the subsequent transient convection. The thermoacoustic oscillating magnitude increases as the surface heat flux, surface heating rate, and cooling tube length are increased, but it decreases as the inlet flow velocity is increased. The surface heating rate and cooling tube length also exert strong impacts on the oscillating frequency of the thermoacoustic wave. Moreover, the cooling tube length and inlet flow velocity significantly affect the second-stage transient convective process and thus the total transient responding time, which both increase as the cooling tube length is increased and/or the inlet flow velocity is decreased. Results obtained herein are helpful for fundamental understanding of the transient heat transfer mechanisms relevant to regenerative engine cooling processes. (C) 2017 Elsevier Ltd. All rights reserved.

Pre One:超临界压力下碳氢燃料裂解与流动传热模拟的快速算法

Next One:Element differential method for solving general heat conduction problems