location: Current position: Home >> Scientific Research >> Paper Publications

Monitoring Lipid Peroxidation within Foam Cells by Lysosome-Targetable and Ratiometric Probe

Hits:

Indexed by:Journal Papers

Date of Publication:2015-08-18

Journal:ANALYTICAL CHEMISTRY

Included Journals:SCIE、EI、PubMed、Scopus

Volume:87

Issue:16

Page Number:8292-8300

ISSN No.:0003-2700

Abstract:Lipid peroxidation (LPO) in lysosomes is a valuable analyte because it is close associated with the evolutions of some major diseases. As a typical example, in the start-up phase of atherosclerosis, lysosomes get as swollen as foams, by accumulating a large amount of lipoproteins, which facilitates the free-radical chain propagation of LPO. Despite the existences of several fluorescent LPO probes, they are not appropriate for reporting the local extents of lysosomal LPO, for their unspecific intracellular localizations. Here, Foam-LPO, the first fluorescent LPO probe specifically targeting lysosomes, has been developed through straightforward synthesis using low-cost reagents. A basic tertiary amine group enables it to selectively localize in acidic lysosomes; and the conjugated diene moiety within the BODIPY fluorophore will degrade in response to lipid perwridation, which results in fluorescence maximum shifting from 586 to 512 nm. Thus, under a confocal fluorescence microscope, Foam-LPO is able not only to visualize dynamic morphological changes of lysosomes during the evolution of foam cells, but also to relatively quantify local LPO extents in single lysosomes through ratiometric imaging. In addition, Foam-LPO proves applicable for two-color flow cytometry (FCM) analysis to make quantitative and high-throughput evaluation of LPO levels in large quantity of cells at different stages during the induction to form foam cells. Also importantly, with the aid of this new probe, the different roles played by low-density lipoprotein (LDL) and its oxidized form (ox-LDL) for the LPO processes of foam cells are distinguished and clarified, which benefits the understanding in the initiation and control factors of atherosclerosis.

Pre One:Bipolar and fixable probe targeting mitochondria to trace local depolarization via two-photon fluorescence lifetime imaging

Next One:Controllable and Stepwise Synthesis of Soluble Ladder-Conjugated Bis(Perylene Imide) Fluorenebisimidazole as a Multifunctional Optoelectronic Material