![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程. 机械制造及其自动化
办公地点:机械工程学院知方楼5051
联系方式:座机:0411-84707276
电子邮箱:hbliu@dlut.edu.cn
Embedded CMAC learning controller for scan-tracking measurement in copying manufacture: results of a case study
点击次数:
论文类型:期刊论文
发表时间:2013-12-01
发表刊物:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
收录刊物:SCIE、EI、Scopus
卷号:69
期号:9-12
页面范围:2401-2414
ISSN号:0268-3768
关键字:Scan-tracking measurement; Copying manufacture; Irregular surface; CMAC learning controller; Measurement efficiency; Open CNC system
摘要:Surface scan-tracking measurement is one of the key technologies in copying manufacture. In conventional scan-tracking measuring processes of irregular surface, the model surface geometric shape and the friction between the probe and model surface are two main factors that can seriously affect the measuring accuracy and efficiency. In order to reduce the impact of these factors and improve measurement efficiency while maintaining measurement accuracy, this paper presents a novel embedded cerebellar modular articulation controller (CMAC) learning controller for scan-tracking measurement in copying manufacture. New approaches to model surface features (including geometric feature and friction feature) identification and quantification are given specifically. Conventional scan-tracking control law is improved by taking into account the impact of model surface feature, and it is combined with CMAC neural network so that it can automatically predict the surface features and adjust the scan-tracking velocity in advance. Thus, high measuring efficiency can be obtained by accelerating scan speed in smooth areas of model surface and decelerating prior to scanning the surface feature cusp regions. Working with a commercial open CNC system, the design steps, integration process, and results of applying the embedded CMAC learning controller were described in detail through the examples of real measurement. Actual industrial tests show a higher measurement efficiency which demonstrates the effectiveness of proposed control strategy for scan-tracking measurement.