张晓鹏

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:南开大学

学位:博士

所在单位:化工海洋与生命学院

学科:化学工程. 工业催化

电子邮箱:xiaopengzhang@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Simultaneous optimization of system structure and working fluid for the three-stage condensation Rankine cycle utilizing LNG cold energy

点击次数:

论文类型:期刊论文

发表时间:2018-07-25

发表刊物:APPLIED THERMAL ENGINEERING

收录刊物:SCIE

卷号:140

页面范围:120-130

ISSN号:1359-4311

关键字:Compression arrangements; Expansion arrangements; LNG cold energy; Superstructure; Working fluid selection

摘要:For the power generation systems utilizing liquefied natural gas (LNG) cold energy, most researches paid attention to enhance the heat exchange process to improve the performance, but the compression and expansion process are less considered. The arrangements for compression and expansion process can affect the working conditions of turbines and pumps, respectively, thus affecting the system performance. Therefore, this paper optimizes the arrangements for compression and expansion process on the basis of the three-stage condensation Rankine cycle proposed in our previous work. For nine cycles with different structures, this paper proposes a superstructure that contains these possible cycle structures to improve the efficiency of the optimization. Firstly, the reliability of the superstructure optimization method is verified. Then, the effect of the gasified pressure of LNG on the optimum cycle structure is studied. Finally, the cycle parameters, structures and working fluids are simultaneously optimized through the proposed superstructure cycle. Results show that the arrangements for compression process have little effect on the cycle performance, while those for expansion process have a relatively significant effect. Furthermore, the optimum cycle structure is not affected by the gasified pressure of LNG and only depends on the used working fluid.