location: Current position: Home >> Scientific Research >> Paper Publications

基于图像识别的微细粒子静电捕集效率评价方法

Hits:

Date of Publication:2022-10-10

Journal:高电压技术

Volume:42

Issue:5

Page Number:1455-1462

ISSN No.:1003-6520

Abstract:Fine particle collection efficiency is evaluated by obtaining and
   analyzing dynamic flow field inside electrostatic precipitator (ESP) and
   dynamic/static images of particles distribution. The side-wall of
   electrostatic precipitator consists of acrylic material, and the
   discharge electrodes are spike-type. The man-made smoke is considered to
   be the particle source for testing, and the flow velocity of the inlet
   is 0.4 m/s. In the experiment, the discharge electrode is energized with
   DC and short pulsed high voltage, respectively. Then, the images which
   contain the flow field changing and smoke particles distribution of
   inlet and outlet of ESP are processed and analyzed. The experimental
   results indicate that the method of processing dynamic and static images
   can be used to observe fine particles and evaluate particles charging
   status timely and effectively. Energized with negative DC high voltage,
   the vortexes of the flow field begin to appear when the voltage value
   rises to -8 kV. While energized with negative short impulses high
   voltage, the vortexes appear when the peak voltage value rises to -30
   kV. The particles collection efficiency with DC energization is higher
   when the voltage value is lower than -22 kV. While the voltage value
   exceeds -22 kV, the particles collection efficiency energized by
   impulses high voltage is higher than that by DC energization, and the
   final collection efficiency can be up to 91.23%.

Note:新增回溯数据

Pre One:单相逆变器分数阶建模及分析

Next One:EFFECT OF ELECTROSTATIC FIELD ON THE FORMATION OF MICRO CERAMIC FIBER