个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:医学部副部长
性别:男
毕业院校:清华大学
学位:博士
所在单位:生物医学工程学院
学科:生物医学工程
联系方式:wang.hongkai@dlut.edu.cn
电子邮箱:wang.hongkai@dlut.edu.cn
Dual-modality multi-atlas segmentation of torso organs from [18F]FDG-PET/CT images
点击次数:
论文类型:期刊论文
发表时间:2019-03-01
发表刊物:International journal of computer assisted radiology and surgery
收录刊物:PubMed
卷号:14
期号:3
页面范围:473-482
ISSN号:1861-6429
关键字:Atlas fusion,Multi-atlas segmentation,Nuclear medicine image analysis,PET/CT
摘要:Automated segmentation of torso organs from positron emission tomography/computed tomography (PET/CT) images is a prerequisite step for nuclear medicine image analysis. However, accurate organ segmentation from clinical PET/CT is challenging due to the poor soft tissue contrast in the low-dose CT image and the low spatial resolution of the PET image. To overcome these challenges, we developed a multi-atlas segmentation (MAS) framework for torso organ segmentation from 2-deoxy-2-[18F]fluoro-D-glucose PET/CT images.Our key idea is to use PET information to compensate for the imperfect CT contrast and use surface-based atlas fusion to overcome the low PET resolution. First, all the organs are segmented from CT using a conventional MAS method, and then the abdomen region of the PET image is automatically cropped. Focusing on the cropped PET image, a refined MAS segmentation of the abdominal organs is performed, using a surface-based atlas fusion approach to reach subvoxel accuracy.This method was validated based on 69 PET/CT images. The Dice coefficients of the target organs were between 0.80 and 0.96, and the average surface distances were between 1.58 and 2.44 mm. Compared to the CT-based segmentation, the PET-based segmentation gained a Dice increase of 0.06 and an ASD decrease of 0.38 mm. The surface-based atlas fusion leads to significant accuracy improvement for the liver and kidneys and saved ~ 10 min computation time compared to volumetric atlas fusion.The presented method achieves better segmentation accuracy than conventional MAS method within acceptable computation time for clinical applications.