Senior Engineer
Open time:..
The Last Update Time:..
Indexed by:期刊论文
Date of Publication:2011-06-01
Journal:REVIEW OF SCIENTIFIC INSTRUMENTS
Included Journals:SCIE、EI、PubMed
Volume:82
Issue:6
Page Number:063110
ISSN No.:0034-6748
Abstract:The purpose of this study is to design a diagnostic system for reactive plasma environment by combining molecular-beam time-of-flight (TOF) mass spectroscopy with laser spectroscopy technique. The combination of TOF mass spectrometers and pulsed lasers is favorable in the diagnosis of intermediate species distribution since they allow the simultaneous but separate recording of the spectra of different species. In the plasma system, the intermediate species in electronic ground state or low lying excited state is pumped to higher energy level with resonant laser excitation, and then, the ionization with a second laser system is possible which can readily be detected by the TOF analyzer. The ionization itself is only used as a detection mechanism for the observation of the excitation of these states. In this manner, the population distribution of intermediate species can be determined with state-selective and mass-selective feature. Also, in this article, a flexible data acquisition and automatic control system based on LABVIEW was designed to integrate all the stand-alone measurement instruments including a TOF spectrometer, a laser system, a high performance oscilloscope, and a digital delay generator into a single personal computer-based control unit. Moreover, a virtual Boxcar integrator with hundreds of channels has been developed to enhance the signal while filtering out the random noises. Finally, the many potentials of this technique in the application of plasma diagnosis will be discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3600798]