Current position: Home >> Scientific Research >> Paper Publications

High-order quasi-conforming triangular Reissner-Mindlin plate element

Release Time:2019-03-20  Hits:

Indexed by: Journal Article

Date of Publication: 2018-01-01

Journal: ENGINEERING COMPUTATIONS

Included Journals: Scopus、SCIE

Volume: 35

Issue: 8

Page Number: 2722-2752

ISSN: 0264-4401

Key Words: Finite element methods; Hellinger-Reissner variational principle; Quasi-conforming; Reissner-Mindlin plate theory; Timoshenko beam function

Abstract: Purpose - A higher-order Reissner-Mindlin plate element method is presented based on the framework of assumed stress quasi-conforming method and Hellinger-Reissner variational principle. A novel six-node triangular plate element is proposed by utilizing this method for the static and free vibration analysis of Reissner-Mindlin plates.
   Design/methodology/approach - First, the initial assumed stress field is derived by using the fundamental analytical solutions which satisfy all governing equations. Then the stress matrix is treated as the weighted function to weaken the strain-displacement equations after the strains are derived by using the constitutive equations. Finally, the arbitrary order Timoshenko beam function is adopted as the string-net functions along each side of the element for strain integration.
   Findings - The proposed element can pass patch test and is free from shear locking and spurious zero energy modes. Numerical tests show that the element can give high-accurate solutions, good convergence and is a good competitor to other models.
   Originality/value - This work gives new formulations to develop high-order Reissner-Mindlin plate element, and the new strategy exhibits advantages of both analytical and discrete methods.

Prev One:Theory and applications of assumed stress quasi-conforming method

Next One:CAE数据驱动下基于机器学习的协同设计冲突消解