Li Ming   

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates

MORE> Recommended Ph.D.Supervisor Recommended MA Supervisor Institutional Repository Personal Page
Language:English

Paper Publications

Title of Paper:A loss combination based deep model for person re-identification

Hits:

Date of Publication:2018-02-01

Journal:MULTIMEDIA TOOLS AND APPLICATIONS

Included Journals:SCIE、EI、Scopus

Volume:77

Issue:3

Page Number:3049-3069

ISSN No.:1380-7501

Key Words:Convolutional neural network; Loss combination; Person re-identification

Abstract:The Convolutional Neural Network (CNN) has significantly improved the state-of-the-art in person re-identification (re-ID). In the existing available identification CNN model, the softmax loss function is employed as the supervision signal to train the CNN model. However, the softmax loss only encourages the separability of the learned deep features between different identities. The distinguishing intra-class variations have not been considered during the training process of CNN model. In order to minimize the intra-class variations and then improve the discriminative ability of CNN model, this paper combines a new supervision signal with original softmax loss for person re-ID. Specifically, during the training process, a center of deep features is learned for each pedestrian identity and the deep features are subtracted from the corresponding identity centers, simultaneously. So that, the deep features of the same identity to the center will be pulled efficiently. With the combination of loss functions, the inter-class dispersion and intra-class aggregation can be constrained as much as possible. In this way, a more discriminative CNN model, which has two key learning objectives, can be learned to extract deep features for person re-ID task. We evaluate our method in two identification CNN models (i.e., CaffeNet and ResNet-50). It is encouraging to see that our method has a stable improvement compared with the baseline and yields a competitive performance to the state-of-the-art person re-ID methods on three important person re-ID benchmarks (i.e., Market-1501, CUHK03 and MARS).

Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024
Click:    MOBILE Version DALIAN UNIVERSITY OF TECHNOLOGY Login

Open time:..

The Last Update Time: ..