王黎

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:兰州大学

学位:博士

所在单位:化工海洋与生命学院

联系方式:wang_li@dlut.edu.cn

电子邮箱:wang_li@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Targeted delivery of in situ PCR-amplified Sleeping Beauty transposon genes to cancer cells with lipid-based nanoparticle-like protocells

点击次数:

论文类型:期刊论文

发表时间:2021-01-29

发表刊物:BIOMATERIALS

卷号:121

页面范围:55-63

ISSN号:0142-9612

关键字:Sleeping Beauty transposon; Protocells; Non-viral gene carrier; Targeted delivery; Cancer cells

摘要:A Sleeping Beauty (SB) transposon system is made of a transposon plasmid (containing gene encoding a desired functional or therapeutic protein) and a transposase plasmid (encoding an enzyme capable of cutting and pasting the gene into the host cell genome). It is a kind of natural, nonviral gene delivery vehicle, which can achieve efficient genomic insertion, providing long-term transgenic expression. However, before the SB transposon system could play a role in promoting gene expression, it has to be delivered efficiently first across cell membrane and then into cell nuclei. Towards this end, we used a nanoparticle-like lipid-based protocell, a closed bilayer of the neutral lipids with the DNA encapsulated inside, to deliver the SB transposon system to cancer cells. The SB transposon system was amplified in situ inside the protocells by a polymerase chain reaction (PCR) process, realizing more efficient loading and delivery of the target gene. To reach a high transfection efficiency, we introduced two targeting moieties, folic acid (FA) as a cancer cell-targeting motif and Dexamethasone (DEX) as a nuclear localization signaling molecule, into the protocells. As a result, the FA enabled the modified targeting protocells to deliver the DNA into the cancer cells with an increased efficiency and the DEX promoted the DNA to translocate to cell nuclei, eventually leading to the increased chromosome insertion efficiency of the SB transposon. In vivo study strongly suggested that the transfection efficiency of FA-modified protocells in the tumor tissue was much higher than that in other tissues, which was consistent with the in vitro results. Our studies implied that with the targeting ligand modification, the protocells could be utilized as an efficient targeting gene carrier. Since the protocells were made of neutral lipids without cationic charges, the cytotoxicity of protocells was significantly lower than that of traditional cationic gene carriers such as cationic liposomes and polyethylenimine, enabling the protocells to be employed in a wider dosage range in gene therapy. Our work shows that the protocells are a promising gene carrier for future clinical applications. (C) 2017 Elsevier Ltd. All rights reserved.