location: Current position: Home >> Scientific Research >> Paper Publications

A three dimensional N-doped graphene/CNTs/AC hybrid material for high-performance supercapacitors

Hits:

Indexed by:期刊论文

Date of Publication:2017-01-01

Journal:RSC ADVANCES

Included Journals:SCIE、EI

Volume:7

Issue:11

Page Number:6664-6670

ISSN No.:2046-2069

Abstract:How to improve the specific capacitance of electrode materials is of great research interest because it is a key factor for electrochemical capacitors. Herein we report a N-doped graphene/CNTs/AC (NGCA) mesoporous hybrid nanomaterial with three dimensional highly-dispersed structure synthesized by hydrothermal method. This NGCA hybrid nanomaterial has a high specific area of 952.92 m(2) g(-1), due to its mesoporous structure caused by inserted carbon nanotubes (CNTs) and activated carbon (AC), preventing the agglomeration of N-doped graphene (NG). The specific capacitance of this materials reaches 750 F g(-1) at 0.5 A g(-1) in KOH (1 M), which is attributed to the path of ion transport supported by the CNTs, the packing density of the electrode being elevated by the AC, and the synergistic effect among layered AC, CNTs and NG. In addition, the stable hybrid architecture makes significant contributions to the superior cycle stability with 81% capacitance retention after 2000 charge and discharge cycles at a current density of 5 A g(-1). The easy synthesis and the superior electrochemical properties endow the hybrid material with great potential in green energy storage systems in the future.

Pre One:Assembling hierarchical metal-oxygen building units with a semirigid tetracarboxylate ligand into a three-dimensional framework for nitrobenzene sensing

Next One:一种新型的石墨烯基纳米复合材料的制备及其在超级电容器中的应用