location: Current position: Home >> Scientific Research >> Paper Publications

Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2

Hits:

Indexed by:期刊论文

Date of Publication:2014-12-01

Journal:NATURE COMMUNICATIONS

Included Journals:SCIE、PubMed、Scopus

Volume:5

Page Number:5687

ISSN No.:2041-1723

Abstract:The development of efficient processes for CO2 transformation into useful products is a long-standing goal for chemists, since CO2 is an abundant, inexpensive and non-toxic renewable C1 resource. Here we describe the enantioselective copolymerization of 3,4-epoxytetrahydrofuran with CO2 mediated by biphenol-linked dinuclear cobalt complex, affording the corresponding polycarbonate with >99% carbonate linkages and excellent enantioselectivity (up to 99% enantiomeric excess). Notably, the resultant isotactic polycarbonate is a typical semicrystalline polymer, possessing a melting point of 271 degrees C. Furthermore, the enantioselective terpolymerization of 3,4-epoxytetrahydrofuran, cyclopentene oxide and CO2 mediated by this dinuclear cobalt complex gives novel gradient polycarbonates, in which the decrement of one component and the increment of the other component occur sequentially from one chain end to the other end. The resultant terpolymers show perfectly isotactic structure and have unique crystalline-gradient nature, in which the crystallinity continuously varies along the main chain.

Pre One:Crystalline Stereocomplexed Polycarbonates: Hydrogen-Bond-Driven Interlocked Orderly Assembly of the Opposite Enantiomers

Next One:Mechanistic Understanding of Dinuclear Cobalt(III) Complex Mediated Highly Enantioselective Copolymerization of meso-Epoxides with CO2