宋学志

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:中国科学院大学

学位:博士

所在单位:化工海洋与生命学院

办公地点:D03-302

联系方式:15604270228

电子邮箱:songxz@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Solution Effect on Synthesis of Polyaniline/rGO Composite for High-Performance Supercapacitor

点击次数:

论文类型:期刊论文

发表时间:2017-07-01

发表刊物:NANO

收录刊物:SCIE、EI、Scopus

卷号:12

期号:7

ISSN号:1793-2920

关键字:Polyaniline; graphene; isopropanol; solution effect; supercapacitor

摘要:Polyaniline (PANI)/graphene composites have been widely investigated as supercapacitor electrode materials. However, the electrochemical performances of PANI/graphene in laboratory were much lower than the theoretical value and still far from the actual needs because the microstructure of the composite was not very uniform and contained defects such as cracks, voids and dislocation. In this paper, PANI/graphene composites were synthesized by a modified method that involved a continuous in situ polymerization-hydrothermal reduction process. The chemical microenvironment of aniline was modified with the introduction of isopropanol as an adjusting agent for PANI polymerization, resulting in the fine microstructures of PANI/graphene composites and the better effect of N-doping. The specific capacitance of these PANI/rGO composites is enhanced from 537.9 to 729.4 F g(1) in comparison with the control sample synthesized in aqueous solution. The cycle stability is also improved from 45.1% to 68.1% capacitance retention after 1000 charge-discharge cycles at a current density of 10 g(-1). These intriguing features make it a suitable method to improve the electrochemical performance of PANI/graphene composites for electrochemical supercapacitors.