Indexed by:期刊论文
Date of Publication:2018-07-01
Journal:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Included Journals:SCIE
Volume:58
Issue:1
Page Number:185-199
ISSN No.:1615-147X
Key Words:Topology optimization; Piezoelectric structure; Energy consumption; Active control; Electrode
Abstract:This paper investigates topology optimization of the electrode coverage over piezoelectric patches attached to a thin-shell structure to reduce the energy consumption of active vibration control under harmonic excitations. The constant gain velocity feedback control method is employed, and the structural frequency response under control is analyzed with the finite element method. In the mathematical formulation of the proposed topology optimization model, the total energy consumption of the control system is taken as the objective function, and a constraint of the maximum allowable dynamic compliance is considered. The pseudo-densities indicating the distribution of surface electrode coverage over the piezoelectric layers are chosen as the design variables, and a penalized model is employed to relate the active damping effect and these design variables. The sensitivity analysis scheme of the control energy consumption with respect to the design variables is derived with the adjoint-variable method. Numerical examples demonstrate that the proposed optimization model is able to generate optimal topologies of electrode coverage over the piezoelectric layers, which can effectively reduce the energy consumption of the control system. Also, numerical comparisons with a minimum-volume optimization model show the advantage of the proposed method with respect to energy consumption. The proposed method may provide useful guidance to the layout optimization of piezoelectric smart structures where the energy supply is limited, such as miniature vibration control systems.
Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics
Discipline:Engineering Mechanics. Computational Mechanics
Business Address:Room 506,Comprehensive Experimental Building#1, DUT
Contact Information:Email: zhangxaiopeng@dlut.edu.cn
Open time:..
The Last Update Time:..