Andy Yi
Associate Professor Supervisor of Master's Candidates
Gender:Male
Alma Mater:The University of Hong Kong
Degree:Doctoral Degree
School/Department:School of Food and Environment
Discipline:Environmental Science
Business Address:D05-301,School of Food and Environment, Dalian University of Technology, Panjin Campus
Contact Information:yixianliang@dlut.edu.cn
E-Mail:yixianliang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2016-10-01
Journal:ATMOSPHERE
Included Journals:SCIE、EI、Scopus
Volume:7
Issue:10
ISSN No.:2073-4433
Key Words:organic carbon; element carbon; long-range transport; PM10; source analysis
Abstract:PM10 (particulate matter) samples were collected at Mount Lu, a high elevation mountain site in south China (August and September of 2011; and March, April and May of 2012). Eight carbonaceous fractions of particles were analyzed to characterize the possible carbonaceous emission sources. During the sampling events, daily average concentrations of PM10 at Mount Lu were 97.87 mu g/m(3) and 73.40 mu g/m(3) in spring and autumn, respectively. The observed mean organic carbon (OC) and element carbon (EC) concentrations during spring in PM10 were 10.58 mu g/m(3) and 2.58 mu g/m(3), respectively, and those in autumn were 6.89 mu g/m(3) and 2.40 mu g/m(3), respectively. Secondary organic carbon concentration was 4.77 mu g/m(3) and 2.93 mu g/m(3) on average, accounting for 28.0% and 31.0% of the total OC in spring and autumn, respectively. Relationships between carbonaceous species and results of principal component analysis showed that there were multiple sources contributing to the carbonaceous aerosols at the observation site. Through back trajectory analysis, it was found that air masses in autumn were mainly transported from the south of China, and these have the highest OC but lowest EC concentrations. Air masses in spring transported from northwest China bring 7.77 mu g/m(3) OC and 2.28 mu g/m(3) EC to the site, with lower levels coming from other sites. These air mass sources were featured by the effective carbon ratio (ECR).
Pre One:Characterization of Polycyclic Aromatic Hydrocarbons in Cloud Deposition at Mount Heng in Southern China
Next One:Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for Benzo[a]pyrene
研究方向
① 环境微纳米材料(微塑料、纳米材料等)的生态毒理效应,与其他污染物的联合毒性模型建立,以及环境复合污染物的生态风险评价;② 赤潮的生态风险评价与预警机制研究。
学术任职
SCI期刊Environmental Science and Pollution Research副主编(2019年9月至今)
科研项目:
1. 大连理工大学基本科研业务费,DUT15RC(3)069,中国近岸海域典型污染物的海水水质基准研究,5.00万,主持,2015.11-2016.12
2. 工业生态与环境工程重点实验室开放课题,KLIEEE-15-09,微小亚历山大藻对日本虎斑猛水蚤的毒性效应及其机制研究,4.00万,2016.01-2018.12
3. 国家自然科学基金青年基金项目,41606131,大田软海绵酸对日本虎斑猛水蚤(Tigriopus japonicus)的毒性效应及其机制研究,20.00万,主持,2017.01-2019.12
4. 大连理工大学基本科研业务费, DUT17LK45,纳米氧化锌与不同类型污染物的联合毒性作用,10.00万,主持,2017.01-2018.12
5. 国家海洋局近岸海域生态环境重点实验室基金,201812。我国近海两种典型环境激素海水水质基准研究,3.0万,主持,2018.01-2019.12
6. 大连理工大学基本科研业务费,DUT17RC(4)37,多壁碳纳米管与污染物的联合毒性作用,5.00万,主持,2019.01-2020.12
教改项目:
1. 大连理工大学盘锦校区教学改革项目,主持,5000元。
参加学术会议
1. 2016. April, 第三届生态毒理学学术会议, Wuxi, China, oral presentation
2. 2017. January, The third Xiamen symposium on Marine Environmental Science (XMAS-III), Xiamen, China
3. 2018.4.24-25年4月24-25日,第二届海洋微塑料污染与控制国际学术研讨会(The 2nd International Symposium on Marine Microplastic Pollution and Control), Shanghai, China
4. 2018.10.14-17, International Conference on Environmental Health Sciences (ICoEHS), Yeosu, Korea. Invited speaker, 特邀报告
5. 2018.10.10-12, International Symposium on Basic Sciences, Incheon, Korea, Invited speaker,特邀报告
6. 2019.4.26-29,第六届全国生态毒理学大会,广州,口头报告
发表论文
2020
[1] Yi, X., Zhang, K., Liu, R.*, Giesy, J.P., Li, Z., Li, W., Zhan, J., Liu, L., Gong, Y.*, 2020. Transcriptomic responses of Artemia salina to an environmentally relevant dose of Alexandrium minutum or Gonyautoxin2/3 exposure. Chemosphere, 238, 124661. SCI: 000497885800057
[2] Li, Z., Yi, X.*, Zhou, H., Chi, T., Li, W., Yang, K., 2020. Combined effect of polystyrene microplastics and dibutylphthalate on the microalgae Chlorella pyrenoidosa. Environmental Pollution, 257, 113604.
[3] Li, Z., Zhou, H., Liu, Y., Zhan, J., Li, W., Yang, K., Yi, X.*, 2020. Acute and chronic combined effect of polystyrene microplastics and dibutyl phthalate on the marine copepod Tigriopus japonicus. Chemosphere 261, 127711.
[4] Xiao, P., Liu, Y., Zong, W., Wang, J., Wu, M., Zhan, J., Yi, X., Liu, L., Zhou, H.*, 2020. Highly selective colorimetric determination of catechol based on the aggregation-induced oxidase–mimic activity decrease of d-MnO2. RSC Advances 10, 6801.
[5] Fu, C., Yi, X., Liu, Y., Zhou, H.*, 2020. Cu2+ activated persulfate for sulfamethazine degradation. Chemosphere 257, 127294.
[6] Liu, Y.*, Gao, W., Zhou, H.*, Yi, X., Bao, Y., 2020. Highly reactive bulk lattice oxygen exposed by simple water treatment of LiCoO2 for catalytic oxidation of airborne benzene. Molecular Catalysis 492, 111003.
[7] Zhu, S.-R., Yang, J.-N., Liu, Y.*, Gao, W., Yi, X., Zhou, H., Wu, M., 2020. Synergetic interaction of lithium cobalt oxide with sulfite to accelerate the degradation of organic aqueous pollutants. Materials Chemistry and Physics, 249, 123123.
[8] Wang, G., Liu, Y., Wu, M., Zong, W., Yi, X., Zhan, J., Liu, L., Zhou, H.*, 2020. Coupling the phenolic oxidation capacities of a bacterial consortium and in situ-generated manganese oxides in a moving bed biofilm reactor (MBBR). Water Research 166.
2019
[1] Yi, X., Chi, T., Liu, B., Liu, C., Feng, G., Dai, X., Zhang, K., Zhou, H.*, 2019. Effect of nano zinc oxide on the acute and reproductive toxicity of cadmium and lead to the marine copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmocology 222, 118-124. SCI:000472812200013
[2] Yi, X., Chi, T., Li, Z., Wang, J., Yu, M., Wu, M., Zhou, H.*, 2019. Combined effect of polystyrene plastics and triphenyltin chloride on the green algae Chlorella pyrenoidosa. Environmental Science and Pollution Research 26, 15011-15018. SCI:000468842100028
[3] Yi, X., Yu, M., Li, Z., Chi, T., Jing, S., Zhang, K., Li, W., Wu, M.*, 2019. Effect of multi-walled carbon nanotubes on the toxicity of triphenyltin to the marine copepod Tigriopus japonicus. Bulletin of Environmental Contamination and Toxicology 102, 789-794. SCI:000469475500009
[4] Yi, X., Wang, J., Li, Z., Zhang, Z., Chi, T., Guo, M., Li, W., Zhou, H.*, 2019. Effect of polystyrene plastics on the toxicity of triphenyltin to the marine diatom Skeletonema costatum – influence of plastic particle size. Environmental Science and Pollution Research 26, 25445-25451. SCI: 000483698500005
2018年
[1] Yi, X., Li, C., Zhong, X., Gong, Y.*, 2018. Development of a lipovitellin-based sandwich ELISA for determination of vitellogenin in the marine medaka Oryzias melastigma. Chemosphere 197, 477-484. SCI:000426231900054
[2] Yi, X., Zhang, K., Han, G., Yu, M., Chi, T., Jing, S., Li, Z., Zhan, J., Wu, M.*, 2018. Toxic effect of triphenyltin in the presence of nano zinc oxide to marine copepod Tigriopus japonicus. Environmental Pollution 243, 687-692. SCI:000449891800075
[3] Li, P., Jia, H., Wang, Y., Li, T., Wang, L., Li, Q., Yang, M., Yue, J., Yi, X., Guo, L., 2018. Characterization of PM2.5-bound phthalic acid esters (PAEs) at regional background site in northern China: Long-range transport and risk assessment. Science of The Total Environment 659, 140-149.
2017年
[1] Zheng, L., Liu, Z., Yan, Z., Zhang, Y., Yi, X., Zhang, J., Zheng, X., Zhou, J., Zhu, Y., 2017. pH-dependent ecological risk assessment of pentachlorophenol in Taihu Lake and Liaohe River. Ecotoxicology and Environmental Safety 135, 216-224.
[2] Yi, X., Bao, V.W.W., Leung, K.M.Y., 2017. Binary mixture toxicities of triphenyltin with tributyltin or copper to five marine organisms: Implications on environmental risk assessment. Marine Pollution Bulletin, 124, 839-846.
[3] Yi, X., Leung, K.M.Y., 2017. Assessing the toxicity of triphenyltin to different life stages of the marine medaka Oryzias melastigma through a series of life-cycle based experiments. Marine Pollution Bulletin, 124, 847-855.
[4] Zheng, L., Liu, Z., Yan, Z., Yi, X., Zhang, J., Zhang, Y., Zheng, X., Zhu, Y., 2017. Deriving water quality criteria for trivalent and pentavalent arsenic. Science of the Total Environment, 587-588, 68-74.
[5] Liu, J., Wang, Y., Li, P.-H., Shou, Y.-P., Li, T., Yang, M.-M., Wang, L., Yue, J.-J., Yi, X., Guo, L.-Q., 2017. Polycyclic aromatic hydrocarbons (PAHs) at high mountain site in north China: concentration, source and health risk assessment. Aerosol and Air Quality Research, 17: 2867-2877.
[6] Zhang, Y., Zang, W., Qin, L., Zheng, L., Cao, Y., Yan, Z., Yi, X., Zeng, H., Liu, Z., 2017. Water Quality Criteria for Copper Based on the BLM Approach in the Freshwater in China. PlosOne. DOI:10.1371/journal.pone.0170105
[7] Zhou, H., Che, L., Guo, X., Wang, X., Zhan, J., Wu, M., Hu, Y., Yi, X., Zhang, X., Liu, L., 2017. Interface modulation of bacteriogenic Ag/AgCl nanoparticles by boosting the catalytic activity for reduction reactions using Co2+ ions. Chemical Communications 53, 4946-4949.
[8] Leung, P.T.Y., Yi, X., Jack, C.H.I., Mak, S.S., Leung, K.M.Y.*, 2017. Photosynthetic and transcriptional responses of the marine diatom Thalassiosira pseudonana to the combined effect of temperature stress and copper exposure. Marine Pollution Bulletin 22, 938-945.
[9] 易先亮, 孙桦奇, 张可可, 张明乾. 三苯基锡对假微型海链藻(Thalassiosira pesudonana)的生长抑制及温度的影响[J]. 生态毒理学报, 2017, 12(6), 150-155.
Yi, X., Sun, H., Zhang, K., Zhang, M., 2017. Temperature-dependnet toxicities of triphenyltin to the marine diatom Thalassiosira pseudonana. Asian Journal of Ecotoxicology 12(6), 150-155.
2016年
[1] Wu, J., Yan, Z, Yi, X., Lin, Y., Ni, J., Gao, X., Liu, Z., Shi, X., 2016. ·Comparison of species sensitivity distributions constructed with predicted acute toxicity data from interspecies correlation estimation models and measured acute data for Benzo[a]pyrene. Chemosphere 144, 2183-2188.
[2] Li, P.-H., Wang, Y., Li, Y.-H., Yang, M.-M., Sun, M.-H., Guo, J., Shou, Y.-P., Yi, X., Wang, L., Xi, Z.-L., Li, Z.-Y., 2016. Characterization of polycyclic aromatic hydrocarbons in cloud deposition at Mount Heng in Southern China. Aerosol and Air Quality Research 16, 3164-3174.
[3] Jia, H., Wang, L., Li, P.*, Wang, Y.*, Guo, L., Li, T., Sun, L., Shou, Y., Mao, T., Yi, X., Characterization, long-range transport and source identification of carbonaceous aerosols during spring and autumn periods at a high mountain site in South China. Atmosphere 2016, 7(10), 122.
[4] Zhao, Y., Shou, Y., Mao, T., Guo, L., Li, P., Yi, X., Li, Q., Shen, L., Zuo, H., Wang, J., Wang, L., 2016. PAHs exposure assessment for highway toll station workers through personal particulate sampling and urinary biomonitoring in Tianjin, China. Polycyclic Aromatic Compounds. DOI: 10.1080/10406638.2016.1220959
2015年及以前
[1] Li, P.*, Wang, Y., Li, Y., Li, H., Yi, X., 2015. Origin and distribution of PAHs in ambient particulate samples at high mountain region in southern China. Advances in Meteorology 2015(6).
[2] Yan, Z., Wang, W., Zhou, J., Yi, X., Zhang, J., Wang, X., Liu, Z.*, 2015. Screening of high phytotoxicity priority pollutants and their ecological risk assessment in China’s surface waters. Chemosphere 128, 28-35. (本人单位非大工)
[3] Wu, J., Liu, Z., Yan, Z., Yi, X., 2015. Derivation of water quality criteria of phenanthrene using interspecies correlation estimation models for aquatic life in China. Environmental Science and Pollution Research 22(12), 1-7.
[4] Li, P., Wang, Y., Li, T., Sun, L., Yi, X., Guo, L., Su, R., 2015. Characterization of carbonaceous aerosols at Mount Lu in South China: implication for secondary organic carbon formation and long-range transport. Environmental Science and Pollution Research 22, 14189-14199.
[5] Zheng, X., Zang, W., Yan, Z.*, Hong, Y.*, Liu, Z., Yi, X., Wang, X., Liu, T., Zhou, L., 2015. Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology 24, 1621-1631.
[6] Yi, X., Kim, E., Jo, H.-J., Schlenk, D., Jung, J.*, 2009. A toxicity monitoring study on identification and reduction of toxicants from a wastewater treatment plant. Ecotoxicology and Environmental Safety 72, 1919-1924.
[7] Yi, X., Kang, S.-W., Jung, J.*, 2010. Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moina macrocopa. Journal of Hazardous Materials 178, 982-987.
[8] Yi, X., Kim, E., Jo, H.-J., Han, T., Jung, J*, 2011. A Comparative Study on Toxicity Identification of Industrial Effluents Using Daphnia magna. Bulletin of Environmental Contamination and Toxicology 87, 319-323.
[9] Yi, X., Leung, K.M.Y.*, Lam, M.H.W., Lee, J.-S., Giesy, G.P., 2012. Review of measured concentrations of triphenyltin compounds in marine ecosystems and meta-analysis of their risks to humans and the environment. Chemosphere 89, 1015-1025.
[10] Yi, X., Leung, P.T.Y., Leung, K.M.Y.*, 2014. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure. Aquatic Toxicology 154, 48-57.
[11] Yi, X., Han, J., Lee, J.-S., Leung, K.M.Y.*, 2014. Ecotoxicity of triphenyltin on the marine copepod Tigriopus japonicus at various biological organisations: from molecular to population-level effects. Ecotoxicology 23, 1314-1325.
[12] Yi, X., Han, J., Lee, J.-S., Leung, K.M.Y.*, 2014. Toxicity of triphenyltin chloride to the rotifer Brachionus koreanus across different levels of biological organisation. Environmental Toxicology 31(1), 13-23.
[13] Li, A.J., Leung, P.T.Y., Bao,V.W.W., Yi, X., Leung, K.M.Y.*, 2014. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer. Ecotoxicology 23, 1564-1573.