黄晓明

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工海洋与生命学院

学科:凝聚态物理. 工程力学

办公地点:D07-304-2

电子邮箱:huangxm@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Which Density Functional Should Be Used to Describe Protonated Water Clusters?

点击次数:

论文类型:期刊论文

发表时间:2017-04-27

发表刊物:JOURNAL OF PHYSICAL CHEMISTRY A

收录刊物:SCIE、EI、PubMed

卷号:121

期号:16

页面范围:3117-3127

ISSN号:1089-5639

摘要:Protonated water cluster is one of the most important hydrogen-bond network systems. Finding an appropriate DFT method to study the properties of protonated water clusters can substantially improve the economy in computational resources without sacrificing the accuracy compared to high-level methods. Using high-level MP2 and CCSD(T) methods as well as, experimental results as benchmark, we systematically examined the effect of seven exchange-correlation GGA functionals (with BLYP, B3LYP, X3LYP, PBE0, PBE1W, M05-2X, and B97-D parametrizations) in describing the geometric parameters, interaction energies, dipole moments, and vibrational properties of protonated water clusters H+(H2O)(2-9,12). The overall performance of all these functionals is acceptable, and each of them has its advantage in certain aspects. X3LYP is the best to describe the interaction energies, and PBE0 and: M05-2X are also recommended to investigate interaction energies. PBE0 gives the best anharmonic frequencies, followed by PBE1W, B97-D and BLYP methods. PBE1W, B3LYP, B97-D, and X3LYP can yield better geometries. The capability of B97-D to distinguish the relative energies between isomers is the best among all the seven methods, followed by M05-2X and PBE0.