Qr code
DALIAN UNIVERSITY OF TECHNOLOGY Login 中文
Zhang Lijing

Associate Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


Gender:Female
Alma Mater:清华大学
Degree:Doctoral Degree
School/Department:化学学院
Discipline:Inorganic Chemistry. Physical Chemistry (including Chemical Physics)
Business Address:大连理工大学化工综合楼C402
Contact Information:zhanglj@dlut.edu.cn
E-Mail:zhanglj@dlut.edu.cn
Click: times

Open time:..

The Last Update Time:..

Current position: Home >> Scientific Research >> Paper Publications

Fabrication and Growth Mechanism of Uniform Suspended Perovskite Thin Films

Hits : Praise

Indexed by:期刊论文

Date of Publication:2018-10-01

Journal:CRYSTAL GROWTH & DESIGN

Included Journals:SCIE

Volume:18

Issue:10

Page Number:5770-5779

ISSN No.:1528-7483

Abstract:Crystallization and morphology control are fundamental challenges in the preparation of perovskite thin films. In this article, we demonstrate the fabrication of large area and uniform CH3NH3PbBr3 suspended films on a periodic microstructure. Compared with the conventional perovskite film, the suspended perovskite film proves to have a better optical performance from both aspects of the simulation and the characterization. Studies on the growth mechanism reveal that both the capillary-induced adhesion and the solvent evaporation rate play important roles in controlling the morphology and formation of the suspended film. In particular, the capillary-induced adhesion supports the precursor-solution film on the nanobowl-like structures, while the dynamic-dripping (DD) method is utilized to accelerate the solvent evaporation rate and promotes the formation of the transition-state film. In situ photoluminescence characterization is employed to investigate the growth kinetics of the crystals in the transition-state film during the annealing process, and X-ray diffraction peak shift of the crystalline perovskite films presents the relationship between the film formation process and the lattice strain. This study provides insights into the influences of the interfacial forces and the evaporation dynamics on the kinetics of perovskite film formation and draws the conclusion that both the DD approach and microstructural parameters are key factors in controlling the film morphologies and achieving high-quality CH3NH3PbBr3 suspended films.