刘安敏
Personal Homepage
Paper Publications
3D self-supported hierarchical core/shell structured MnCo2O4@CoS arrays for high-energy supercapacitors
Hits:

Indexed by:期刊论文

Date of Publication:2018-01-28

Journal:JOURNAL OF MATERIALS CHEMISTRY A

Included Journals:SCIE、EI

Volume:6

Issue:4

Page Number:1822-1831

ISSN No.:2050-7488

Abstract:MnCo2O4 architectures assembled from well-aligned nanowire or nanosheet arrays have been vertically grown on Ni foam with robust adhesion by in situ hydrothermal growth. Interestingly, the nanostructures of MnCo2O4 can be easily tailored from nanowires to nanosheets by the addition of NH4F at moderate concentrations in a mixed solvent. Further, unique 3D self-supported hierarchical core/shell MnCo2O4@CoS nanowire or nanosheet (MCO-NW@CS or MCO-NS@CS) arrays have been further engineered and synthesized via a subsequent electrodeposition process, which shows that interconnected CoS ultrathin layers as the shell have been uniformly immobilized on the MnCo2O4 arrays to form a novel core/shell structure. The synergic effect of the unique structure and heterogeneity is advantageous to increase the interfacial area, improve the charge accumulation and storage, accelerate the electron and electrolyte ion transfer, and enhance the electrochemical activity of the two components (MnCo2O4 and CoS) when used as an integrated electrode for (asymmetric) supercapacitors. As a result, the MCO-NW@CS or MCO-NS@CS electrodes display greatly improved electrochemical performance including remarkable specific capacitance, outstanding rate capability and good cycling stability. Moreover, the solid-state asymmetric supercapacitor using MCO-NS@CS as the positive active electrode and activated carbon (AC) as the negative active electrode has also achieved high energy density (55.1 W h kg(-1) at 477.3 W kg(-1)). The hierarchical MCO-NW@CS or MCO-NS@CS electrodes with outstanding structural characteristics hold great promise not only in high capacitance applications but also in high energy and power density fields. In addition, to have a deeper understanding of their electrochemical behavior, a combined experimental and density functional theory (DFT) calculation study is also introduced.

Personal information

Associate Professor
Supervisor of Master's Candidates

Gender:Male

Alma Mater:哈尔滨工业大学

Degree:Doctoral Degree

School/Department:化工海洋与生命学院

Discipline:Chemical Engineering. Energy Chemical Technology. Chemistry and Chemical Engineering of Functional

Business Address:D01-312A

Contact Information:0427-2631809

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version