Indexed by:期刊论文
Date of Publication:2017-09-15
Journal:APPLIED SURFACE SCIENCE
Included Journals:SCIE、EI、Scopus
Volume:416
Page Number:751-756
ISSN No.:0169-4332
Key Words:Sn; Graphene; Nanocomposites; Lithium-ion batteries
Abstract:A general strategy is demonstrated to achieve superior lithium storage properties by constructing Sn/graphene nanocomposite architecture. The synergistic lithium storage performance of Sn/graphene is initially investigated by quantum chemical calculations based on density functional theory. Results show that the electronic conductivity of Sn/graphene is superior to that of Sn metal. Subsequently, a facile precipitation method is designed to fabricate Sn/graphene composites. SEM and TEM analysis reveals that Sn nanoparticles (40-80 nm) are homogenously sandwiched between graphene nanosheets. Cyclic voltammetry and galvanostatic charge/discharge measurements show that Sn/graphene composites exhibit superior lithium storage capability as compared to bare Sn. The enhanced performance is further investigated by electrochemical impedance spectroscopy. Results suggest that the addition of graphene in the nanocomposites significantly improves the electron transfer, which is consistent with the quantum chemical calculations. (C) 2017 Elsevier B.V. All rights reserved.
Associate Professor
Supervisor of Master's Candidates
Gender:Male
Alma Mater:哈尔滨工业大学
Degree:Doctoral Degree
School/Department:化工海洋与生命学院
Discipline:Chemical Engineering. Energy Chemical Technology. Chemistry and Chemical Engineering of Functional
Business Address:D01-312A
Contact Information:0427-2631809
Open time:..
The Last Update Time:..