刘安敏
Personal Homepage
Paper Publications
2D heterostructure comprised of Ni3S2/d-Ti3C2 supported on Ni foam as binder-free electrode for hybrid supercapacitor
Hits:

Indexed by:Journal Papers

Date of Publication:2020-01-25

Journal:JOURNAL OF ALLOYS AND COMPOUNDS

Included Journals:EI、SCIE

Volume:814

ISSN No.:0925-8388

Key Words:2D heterostructure; Ti3C2; Ni3S2; Binder-free; Supercapacitor

Abstract:2D materials and their composites are promising energy storage candidates. In this work, 2D horizontal heterostructure comprised of Ni3S2/delaminated-Ti3C2, denoted as Ni3S2/d-Ti3C2, supported on Ni foam is prepared by a two-step method and used as binder free electrode for hybrid supercapacitor. The as-obtained composites are characterized by X-ray diffraction analysis, scanning electron microscope, transmission electron microscope and X-ray photoelectron spectroscopy. The electrochemical properties of Ni3S2/d-Ti3C2 on Ni foam (denoted as Ni3S2/d-Ti3C2/NF) are studied using cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy. It is found that the Ni3S2/d-Ti3C2/NF electrode exhibits superior capacitive performance with specific capacity of 2204 F g(-1) at a constant current density of 1 A g(-1). A hybrid supercapacitor is fabricated by using Ni3S2/d-Ti3C2/NF electrode as positive electrode, active carbon (AC) coated on Ni foam as negative electrode and KOH aqueous solution as electrolyte. The Ni3S2/d-Ti3C2/NF//AC hybrid supercapacitor exhibits a maximum energy density of 23.6Wh kg(-1) and a maximum power density of 4004.4 W kg(-1). The results supply new strategy for constructing MXene-based 2D horizontal heterostructure, and suggest that Ni3S2/d-Ti3C2/NF composite as a binder free electrode is an ideal candidate for supercapacitor applications. (C) 2019 Elsevier B.V. All rights reserved.

Personal information

Associate Professor
Supervisor of Master's Candidates

Gender:Male

Alma Mater:哈尔滨工业大学

Degree:Doctoral Degree

School/Department:化工海洋与生命学院

Discipline:Chemical Engineering. Energy Chemical Technology. Chemistry and Chemical Engineering of Functional

Business Address:D01-312A

Contact Information:0427-2631809

Click:

Open time:..

The Last Update Time:..


Address: No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province, P.R.C., 116024

MOBILE Version