副教授 博士生导师 硕士生导师
主要任职: Vice-director of the Deep Underground Engineering Research Center
性别: 男
毕业院校: 新南威尔士大学
学位: 博士
所在单位: 土木工程系
学科: 岩土工程
办公地点: 建设工程学院综合四号楼511室
联系方式: 13478612856(微信同步)
电子邮箱: yingchun_li@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2019-01-01
发表刊物: INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS
收录刊物: SCIE、Scopus
卷号: 43
期号: 1
页面范围: 166-182
ISSN号: 0363-9061
关键字: discrete element model; fracturing; fragmentation; hyper elasticity analysis; Poisson's ratio
摘要: The bonded discrete element model (DEM) is a numerical tool that is becoming widely used when studying fracturing, fragmentation, and failure of solids in various disciplines. However, its abilities to solve elastic problems are usually overlooked. In this work, the main features of the 2D bonded DEM which influence Poisson's ratio and Young's modulus, and accuracy when solving elastic boundary value problems, are investigated. Outputs of numerical simulations using the 2D bonded DEM, the finite element method, a hyper elasticity analysis, and the distinct lattice spring model (DLSM) are compared in the investigation. It is shown that a shear interaction (local) factor and a geometric (global) factor are two essential elements for the 2D bonded DEM to reproduce a full range of Poisson's ratios. It is also found that the 2D bonded DEM might be unable to reproduce the correct displacements for elastic boundary value problems when the represented Poisson's ratio is close to 0.5 or the long-range interaction is considered. In addition, an analytical relationship between the shear stiffness ratio and the Poisson's ratio, derived from a hyper elasticity analysis and applicable to discontinuum-based models, provides good agreement with outputs from the 2D bonded DEM and DLSM. Finally, it is shown that the selection of elastic parameters used the 2D bonded DEM has a significant effect on fracturing and fragment patterns of solids.