![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:中科院上海硅酸盐研究所
学位:博士
所在单位:物理学院
学科:微电子学与固体电子学. 凝聚态物理
办公地点:大连理工大学科技园C座301-1办公室
联系方式:E-mail:jmbian@dlut.edu.cn.
电子邮箱:jmbian@dlut.edu.cn
Correlation of ETL in perovskite light-emitting diodes and the ultra-long rise time in time-resolved electroluminescence
点击次数:
论文类型:期刊论文
发表时间:2018-06-15
发表刊物:MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
收录刊物:SCIE、EI
卷号:80
页面范围:131-136
ISSN号:1369-8001
关键字:Perovskite; Light-emitting diodes; Delayed electroluminescence; Electron transport layers
摘要:Here, two series CH3NH3PbI3 based perovskite light-emitting diodes (Pe-LEDs) were synthesized with TiO2 and SnO2 as electron transport layer (ETL), respectively. An exceptional ultra-long rise time (T-r) persisting to tens of seconds was observed in time-resolved electroluminescence (EL) characteristics from the Pe-LEDs as driven with constant voltage, which might be intrinsic to the MAPbI(3) perovskite layer regardless of the ETL materials. Qualitatively, SnO2 based ETL was preferred than the TiO2 ETL counterpart for faster response Pe-LED devices with lower T-r. Moreover, the T-r of Pe-LED can be adjusted in the range of 10-28 s by precisely controlling the thickness of SnO2 ETL. In addition, the similar trend was also confirmed in the SnO2 ETL thickness dependent hysteresis index deduced from current-voltage (J-V) characteristics. The mechanism was interpreted by means of dynamics of carrier injection and transport at the perovskite/ETL interface. These achievement may contribute to better understanding of the origin and mechanism of the slow process in EL characteristics, and hence favorable for minimizing this detrimental effects.