边继明

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中科院上海硅酸盐研究所

学位:博士

所在单位:物理学院

学科:微电子学与固体电子学. 凝聚态物理

办公地点:大连理工大学科技园C座301-1办公室

联系方式:E-mail:jmbian@dlut.edu.cn.

电子邮箱:jmbian@dlut.edu.cn

扫描关注

论文成果

当前位置: 边继明 >> 科学研究 >> 论文成果

Appearance-based gaze estimation using deep features and random forest regression

点击次数:

论文类型:期刊论文

发表时间:2016-10-15

发表刊物:KNOWLEDGE-BASED SYSTEMS

收录刊物:SCIE、EI、Scopus

卷号:110

页面范围:293-301

ISSN号:0950-7051

关键字:Appearance; Gaze estimation; Deep features; Random forest; CNN

摘要:Conventional appearance-based gaze estimation methods employ local or global features as eye gaze appearance descriptor. But these methods don't work well under natural light with free head movement. To solve this problem, we present an appearance-based gaze estimation method using deep feature representation and feature forest regression. The deep feature is learned through hierarchical extraction of deep Convolutional Neural Network (CNN). And random forest regression with cluster-to-classify node splitting rules is used to take advantage of data distribution in sparse feature space. Experimental results demonstrate that the deep feature has a better performance than local features on calibrated gaze regression. The combination of deep features and random forest regression provides an effective solution for gaze estimation in a natural environment. (C) 2016 Elsevier B.V. All rights reserved.