边继明

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:中科院上海硅酸盐研究所

学位:博士

所在单位:物理学院

学科:微电子学与固体电子学. 凝聚态物理

办公地点:大连理工大学科技园C座301-1办公室

联系方式:E-mail:jmbian@dlut.edu.cn.

电子邮箱:jmbian@dlut.edu.cn

扫描关注

论文成果

当前位置: 边继明 >> 科学研究 >> 论文成果

A simple but effective appearance-based gaze estimation method from massive synthetic eye images

点击次数:

论文类型:会议论文

发表时间:2017-06-18

卷号:2018-February

页面范围:1184-1188

摘要:A novel method for appearance-based gaze estimation from massive synthetic eye images is proposed in this paper. This method is a combination of neighbor selection and gaze local regression for gaze mapping. First, a simple cascaded method using multiple k-NN(k-Nearest Neighbor) classifier is employed to select neighbors in feature space joint head pose, pupil center and eye appearance. Second, PLSR (Partial Least Square Regression) is applied to seek for a direct correlation between image feature and gaze angle. Experimental results demonstrate that the proposed method achieves state-of-The-Art accuracy below 1 degree for with-in subject gaze estimation on public synthesis eye image dataset. © 2017 IEEE.