个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:美国华盛顿大学
学位:博士
所在单位:化工学院
学科:药剂学. 药物工程. 精细化工
办公地点:大连理工大学西部校区化工实验楼G309
联系方式:0411-84986336 15941139319
电子邮箱:ffcheng@dlut.edu.cn
Curcumin induces structural change and reduces the growth of amyloid-beta fibrils: a QCM-D study
点击次数:
论文类型:期刊论文
发表时间:2015-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI、Scopus
卷号:5
期号:38
页面范围:30197-30205
ISSN号:2046-2069
摘要:Amyloid-beta (A beta) fibrillation is a crucial factor in the etiology of Alzheimer's disease (AD). Curcumin has been widely studied and considered as a promising drug for AD treatment, but its molecular mechanism in inhibiting A beta aggregation is still not clearly defined. In the present study, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to analyse the growth behaviors of A beta fibrils in the presence and absence of curcumin. The viscoelasticity properties that reflect the structural information of the resulting A beta aggregates were also analysed using a Delta D/Delta F plot. It was found that the presence of curcumin could accelerate the deposition process of A beta monomers on the initially immobilized fibrils, with the growth rate being 21.1-120.6% higher than that of the control. Viscoelasticity analysis showed that curcumin-induced A beta aggregates exhibited a much more flexible structure than that of the initial fibrils, and the degree of this kind of structural conversion was related to the concentration of curcumin. Importantly, we found that further deposition of A beta monomers on these loosely constructed A beta aggregates was significantly inhibited, with the growth rate being only 34.2% of initial rate. Therefore, the QCM-D study demonstrated that curcumin inhibited the growth of A beta fibrils through a process that led to the structural conversion of the growing fibrils, and directed these fibrils to an off-pathway aggregation, which may hinder the formation of long A beta fibrils that could cause neuronal damage.