location: Current position: Home >> Scientific Research >> Paper Publications

Incorporating User Generated Content for Drug Drug Interaction Extraction Based on Full Attention Mechanism

Hits:

Indexed by:Journal Papers

Date of Publication:2019-07-01

Journal:IEEE TRANSACTIONS ON NANOBIOSCIENCE

Included Journals:SCIE、EI

Volume:18

Issue:3

Page Number:360-367

ISSN No.:1536-1241

Key Words:Drug drug interaction; drug safety; attention mechanism

Abstract:It is crucial for doctors to fully understand the interaction between drugs in prescriptions, especially when a patient takes multiple medications at the same time during treatment. The purpose of drug drug interaction (DDI) extraction is to automatically obtain the interaction between drugs from biomedical literature. Current state-of-the-art approaches for DDI extraction task are based on artificial intelligence and natural language processing. While such existing DDI extraction methods can provide more knowledge and enhance the performance through external resources such as biomedical databases or ontologies, due to the difficulty of updating, these external resources are delayed. In fact, user generated content (UGC) is another kind of external medical resources that can be quickly updated. We are trying to use UGC resources to provide more available information for our deep learning DDI extraction method. In this paper, we present a DDI extraction approach through a new attention mechanism called full-attention which can combine the UGC information with contextual information. We conducted a series of experiments on the DDI 2013 Evaluation dataset to evaluate our method. Experiments show improved performance compared with the state of the art and UGC-DDI model achieves a competitive F-score of 0.712.

Pre One:Detecting adverse drug reactions from social media based on multi-channel convolutional neural networks

Next One:Chemical-protein interaction extraction via contextualized word representations and multihead attention