![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:创新园大厦B811
联系方式:0411-84706009-2811
电子邮箱:wangjian@dlut.edu.cn
An effective neural model extracting document level chemical-induced disease relations from biomedical literature.
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:Journal of biomedical informatics
收录刊物:PubMed、SCIE、SSCI
卷号:83
页面范围:1-9
ISSN号:1532-0480
关键字:Chemical-induced diseases; Document level; Long short-term memory; Convolutional neural network; Text mining
摘要:Since identifying relations between chemicals and diseases (CDR) are important for biomedical research and healthcare, the challenge proposed by BioCreative V requires automatically mining causal relationships between chemicals and diseases which may span sentence boundaries. Although most systems explore feature engineering and knowledge bases to recognize document level CDR relations, feature learning automatically is limited only in a sentence. In this work, we proposed an effective model that automatically learns document level semantic representations to extract chemical-induced disease (CID) relations from articles by combining advantages of convolutional neural network and recurrent neural network. First, to purposefully collect contexts, candidate entities existing in multiple sentences of an article were masked to make the model have ability to discern candidate entities and general terms. Next, considering the contiguity and temporality among associated sentences as well as the topic of an article, a hierarchical network architecture was designed at the document level to capture semantic information of different types of text segments in an article. Finally, a softmax classifier performed the CID recognition. Experimental results on the CDR corpus show that the proposed model achieves a good overall performance compared with other state-of-the-art methods. Although only using two types of embedding vectors, our approach can perform well for recognizing not only intra-sentential but also inter-sentential CID relations. Copyright © 2018. Published by Elsevier Inc.