![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
学科:计算机应用技术
办公地点:创新园大厦B811
联系方式:0411-84706009-2811
电子邮箱:wangjian@dlut.edu.cn
Full-attention Based Drug Drug Interaction Extraction Exploiting User-generated Content
点击次数:
论文类型:会议论文
发表时间:2018-01-01
收录刊物:CPCI-S
页面范围:560-565
关键字:drug drug interaction; drug safety; attention mechanism
摘要:When a patient takes multiple medications simultaneously under treatment, it is vital for the doctor to comprehend all interactions between drugs in the prescription entirely. Drug drug interaction (DDI) extraction aims to obtain interactions between drugs from biomedical literature automatically. Nowadays, researchers apply artificial intelligence and natural language processing techniques to perform DDI extraction task. Existing DDI extraction methods have utilized some kinds of external resources such as biomedical databases or ontologies to offer more knowledge and improve the performance. However, these kinds of external resources are delayed because of the hardship of updating. User-generated content (UGC) is another sort of external biomedical resource which is up-to-date and can be updated rapidly. We attempt to utilize UGC resource in our deep learning DDI extraction method to provide more fresh information. We propose a DDI extraction method that merges UGC information and contextual information together by a new attention mechanism called full-attention. We conduct a series of experiments on the DDI 2013 Evaluation dataset to evaluate our method. UGC-DDI outperforms the other state-of-the-art methods and achieves a competitive F-score of 0.712.