个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机应用技术
办公地点:大连市经济技术开发区图强街321号大连理工大学开发区校区信息楼
联系方式:laohubinbin@163.com
电子邮箱:liubin@dlut.edu.cn
Localizing relevant frames in web videos using topic model and relevance filtering
点击次数:
论文类型:期刊论文
发表时间:2014-10-01
发表刊物:MACHINE VISION AND APPLICATIONS
收录刊物:SCIE、EI、Scopus
卷号:25
期号:7,SI
页面范围:1661-1670
ISSN号:0932-8092
关键字:Topic model; Web videos; Kernel density estimation; Tag localization
摘要:Numerous web videos associated with rich metadata are available on the Internet today. While such metadata like video tags bring us facilitation and opportunities for video search and multimedia content understanding, some challenges also arise due to the fact that those video tags are usually annotated at the video level, while many tags actually only describe parts of the video content. How to localize the relevant parts or frames of web video for given tags is the key to many applications and research tasks. In this paper we propose combining topic model and relevance filtering to localize relevant frames. Our method is designed in three steps. First, we apply relevance filtering to assign relevance scores to video frames and a raw relevant frame set is obtained by selecting the top ranked frames. Then, we separate the frames into topics by mining the underlying semantics using latent Dirichlet allocation and use the raw relevance set as validation set to select relevant topics. Finally, the topical relevances are used to refine the raw relevant frame set and the final results are obtained. Experiment results on two real web video databases validate the effectiveness of the proposed approach.