大连理工大学  登录  English 
宁德志
点赞:

教授   博士生导师   硕士生导师

主要任职: 建设工程学院副院长

其他任职: 海岸和近海工程国家重点实验室主任

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 建设工程学院

学科: 港口、海岸及近海工程. 流体力学

办公地点: 海岸和近海工程国家重点实验室A309

联系方式: 0411-84708267

电子邮箱: dzning@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Hydrodynamic response of a submerged tunnel element suspended from a twin-barge under random waves

点击次数:

论文类型: 期刊论文

发表时间: 2017-05-01

发表刊物: OCEAN ENGINEERING

收录刊物: SCIE、EI

卷号: 135

页面范围: 63-75

ISSN号: 0029-8018

关键字: Immersed tunnel; Twin-barge; Motion response; Irregular waves; Numerical model

摘要: It is possible that the excessive dynamic responses of tunnel elements could jeopardize the safety and accuracy of installation procedures used during subsea tunnel construction. To investigate the motion characteristics of the tunnel element, experimental measurements of a moored tunnel element suspended from a twin-barge were conducted in a wave flume at a geometric scale of 1:50. A corresponding numerical model was developed to simulate the dynamic response of the tunnel-barge system in realistic sea conditions, using hydrodynamic parameters from a radiation/diffraction potential model. Multiple linear wave conditions and three immersion depths were tested. The results indicate that the motion response of the tunnel element increases with decreasing immersion depth, and the natural periods of the tunnel, barge and combined tunnel-barge system play key roles in the influence of wave conditions on the motions of the tunnel. It was found that the low frequency motion of the tunnel element is large in small wave periods. The mooring system under such conditions needs to be considered carefully during system design in order to safely control the motions of the tunnel-barge system in energetic ocean environments.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学