大连理工大学  登录  English 
宁德志
点赞:

教授   博士生导师   硕士生导师

主要任职: 建设工程学院副院长

其他任职: 海岸和近海工程国家重点实验室主任

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 建设工程学院

学科: 港口、海岸及近海工程. 流体力学

办公地点: 海岸和近海工程国家重点实验室A309

联系方式: 0411-84708267

电子邮箱: dzning@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Analytical investigation of hydrodynamic performance of a dual pontoon WEC-type breakwater

点击次数:

论文类型: 期刊论文

发表时间: 2017-04-01

发表刊物: APPLIED OCEAN RESEARCH

收录刊物: SCIE、EI、Scopus

卷号: 65

页面范围: 102-111

ISSN号: 0141-1187

关键字: Linear potential flow theory; Floating breakwaters; Wave energy extraction; Effective frequency range

摘要: Based on the linear potential flow theory and matching eigen-function expansion technique, an analytical model is developed to investigate the hydrodynamics of two-dimensional dual-pontoon floating breakwaters that also work as oscillating buoy wave energy converters (referred to as the integrated system hereafter). The pontoons are constrained to heave motion independently and the linear power take-off damping is used to calculate the absorbed power. The proposed model is verified by using the energy conservation principle. The effects of the geometrical parameters on the hydrodynamic properties of the integrated system, including the reflection and transmission coefficients and CWR (capture width ratio, which is defined as the ratio of absorbed wave power to the incident wave power in the device width). It is found that the natural frequency of the heave motion and the spacing of the two pontoons are the critical factors affecting the performance of the integrated system. The comparison between the results of the dual-pontoon breakwater and those of the single-pontoon breakwater shows that the effective frequency range (for condition of transmission coefficient K-T < 0.5 and the total capture width ratio eta(total) >20%) of the dual-pontoon system is broader than that of the single-pontoon system with the same total volume. For the two-pontoon system, the effective frequency range can be broadened by decreasing the draft of the front pontoon within certain range. (C) 2017 Elsevier Ltd. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学