大连理工大学  登录  English 
宁德志
点赞:

教授   博士生导师   硕士生导师

主要任职: 建设工程学院副院长

其他任职: 海岸和近海工程国家重点实验室主任

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 建设工程学院

学科: 港口、海岸及近海工程. 流体力学

办公地点: 海岸和近海工程国家重点实验室A309

联系方式: 0411-84708267

电子邮箱: dzning@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Wave dilliaction from a truncated cylinder with an upper porous sidewall and an inner column

点击次数:

论文类型: 期刊论文

发表时间: 2017-01-15

发表刊物: OCEAN ENGINEERING

收录刊物: SCIE、EI

卷号: 130

页面范围: 471-481

ISSN号: 0029-8018

关键字: Potential theory; Wave diffraction; Analytical derivation; Porous structure; Truncated cylinder

摘要: An analytical model based on linear potential theory is proposed to predict the three-dimensional wave diffraction from a truncated cylinder with an upper porous sidewall and an inner column in the finite water depth. The velocity potential is analytically derived in the whole fluid domain based on the method of variable separation and eigen-function expansion technique. The continuous conditions of pressure and velocity potential are satisfied on the interface between the adjacent sub-domains. Wave forces are calculated directly from the incident and diffracted potentials. The model is validated in comparison with other published results of wave diffraction from a porous bottom-mounted cylinder and impermeable truncated cylinder, respectively. Then the numerical tests are performed to investigate the effects of the porous coefficient G, the draft ratio h/h(1) (h and h(1) mean the drafts of the porous part and whole cylinder, respectively), the ratio of the inner and outer radii b/a and the water depth d/h(1) (d means the water depth) on the wave forces acting on the structure. It is found that, by introducing an upper porous sidewall, the hydrodynamic loads are improved in comparison with the fully impermeable structure, which may be benefit to enhance the survivability of the relating marine structure.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学