教授 博士生导师 硕士生导师
主要任职: 建设工程学院副院长
其他任职: 海岸和近海工程国家重点实验室主任
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 建设工程学院
学科: 港口、海岸及近海工程. 流体力学
办公地点: 海岸和近海工程国家重点实验室A309
联系方式: 0411-84708267
电子邮箱: dzning@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 期刊论文
发表时间: 2008-08-10
发表刊物: INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
收录刊物: SCIE、EI、Scopus
卷号: 57
期号: 10
页面范围: 1459-1483
ISSN号: 0271-2091
关键字: Boussinesq equations; finite volume method; cartesian cut cell; Godunov method; nonlinear waves; coastal structures
摘要: Boussinesq models describe the phase-resolved hydrodynamics of unbroken waves and wave-induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non-linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sorensen (Coastal Eng. 1992; 15:371-388) on Cartesian cut-cell grids, the aim being to model non-linear wave interaction with coastal structures. An explicit second-order MUSCL-Hancock Godunov-type finite volume scheme is used to solve the non-linear and weakly dispersive Boussinesq-type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost-cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright (c) 2007 John Wiley & Sons, Ltd.