location: Current position: English-homepage >> Scientific Research >> Paper Publications

A dish parallel BP for traffic flow forecasting

Hits:

Indexed by:会议论文

Date of Publication:2007-12-15

Included Journals:EI、CPCI-S、Scopus

Page Number:546-549

Abstract:Reducing training time for artificial neural network (ANN) when training large samples is an active area of research. The back propagation (BP) is wildly used in Short-term Traffic Flow Forecasting which requires the training set Size be much larger than the network size. In order to improve training speed, Data parallelism is a good idea. A novel data parallel RP based on dish network is proposed in this paper. Theoretical and experimental evidence prove that the dish data parallel BP reduce the communication cost compared with the traditional one. Meanwhile, by using the real traffic flow data of DaLian city, experiments show that this dish data parallel BP improves the training speed and enhances speed-zip radio.

Pre One:基于WSN的低功耗车速检测模型和算法研究

Next One:基于静电力学的网格负载平衡调度算法