• 更多栏目

    郭禾

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:硕士
    • 所在单位:软件学院、国际信息与软件学院
    • 联系方式:guohe@dlut.edu.cn
    • 电子邮箱:guohe@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    An online performance anomaly detector in cluster file Systems

    点击次数:

    论文类型:会议论文

    发表时间:2010-12-18

    收录刊物:EI、Scopus

    页面范围:191-198

    摘要:Performance problems, which can stem from different system components, such as network, memory, and storage devices, are difficult to diagnose and isolate in a cluster file system. In this paper, we present an online performance anomaly detector which is able to efficiently detect performance anomaly and accurately identify the faulty sources in a system node of a cluster file system. Our method exploits the stable relationship between workloads and system resource statistics to detect the performance anomaly and identify faulty sources which cause the performance anomaly in the system. Our preliminary experimental results demonstrate the efficiency and accuracy of the proposed performance anomaly detector. ? 2010 IEEE.