郭艳卿

(教授)

 博士生导师  硕士生导师
学位:博士
性别:男
毕业院校:大连理工大学
所在单位:未来技术学院/人工智能学院
电子邮箱:guoyq@dlut.edu.cn

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A Universal JPEG Image Steganalysis Method Based on Collaborative Representation

发表时间:2019-03-11 点击次数:

论文名称:A Universal JPEG Image Steganalysis Method Based on Collaborative Representation
论文类型:会议论文
收录刊物:EI、CPCI-S、Scopus
页面范围:285-289
关键字:Steganalysis; binary classification; least square; collaborative representation
摘要:In recent years, plenty of advanced approaches for universal JPEG image steganalysis have been proposed due to the need of commercial and national security. Recently, a novel sparse-representation-based method was proposed, which applied sparse coding to image steganalysis [4]. Despite satisfying experimental results, the method emphasized too much on the role of l(1)-norm sparsity, while the effort of collaborative representation was totally ignored. In this paper, we focus on the least square problem in a binary classification model and present a similar yet much more efficient JPEG image steganalysis method based on collaborative representation. We still represent a testing sample collaboratively over the training samples from both classes (cover and stego), while the regularization term is changed from l(1)-norm to l(2)-norm and each class-specific representation residual owns an extra divisor. Experimental results show that our proposed steganalysis method performs better than the recently presented sparse-representation-based method as well as the traditional SVM-based method. Extensive experiments clearly show that our method has very competitive steganalysis performance, while it has significantly less complexity.
发表时间:2014-10-18