个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
办公地点:大连理工大学创新园大厦8-A0824
联系方式:18641168567
电子邮箱:gztan@dlut.edu.cn
Parallel SMO for Traffic flow Forecasting
点击次数:
论文类型:会议论文
发表时间:2010-01-30
收录刊物:EI、CPCI-S、Scopus
卷号:20-23
页面范围:843-848
关键字:Support Vector Machine (SVM); Parallel SMO; Traffic Flow Forecasting
摘要:Accurate traffic flow forecasting is crucial to the development of intelligent transportation systems and advanced traveler information systems. Since Support Vector Machine (SVM)have better generalization performance and can guarantee global minima for given training data, it is believed that SVR is an effective method in traffic flow forecasting. But with the sharp increment of traffic data, traditional serial SVM can not meet the real-time requirements of traffic flow forecasting. Parallel processing has been proved to be a good method to reduce training time. In this paper, we adopt a parallel sequential minimal optimization (Parallel SMO) method to train SVM in multiple processors. Our experimental and analytical results demonstrate this model can reduce training time, enhance speed-up ratio and efficiency and better satisfy the real-time demands of traffic flow forecasting.