个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
办公地点:大连理工大学创新园大厦8-A0824
联系方式:18641168567
电子邮箱:gztan@dlut.edu.cn
Direct Sparse Nearest Feature Classifier for Face Recognition
点击次数:
论文类型:会议论文
发表时间:2010-01-01
收录刊物:CPCI-S
卷号:6330
页面范围:386-394
关键字:Nearest feature classifier; Sparse representation; Receiver operator characteristic; Face recognition
摘要:Sparse signal representation proposes a novel insight to solve face recognition problem. Based on the sparse assumption that a new object can be sparsely represented by other objects, we propose a simple yet efficient direct sparse nearest feature classifier to deal with the problem of automatically real-time face recognition. Firstly, we present a new method, which calculates an approximate sparse code to alleviate the extrapolation and interpolation inaccuracy in nearest feature classifier. Secondly, a sparse score normalization method is developed to normalize the calculated scores and to achieve a high receiver operator characteristic (ROC) curve. Experiments on FRGC and PIE face databases show that our method can get comparable results against sparse representation-based classification on both recognition rate and ROC curve.