个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
办公地点:大连理工大学创新园大厦8-A0824
联系方式:18641168567
电子邮箱:gztan@dlut.edu.cn
Short-Term Traffic Flow Prediciton Based on Parallel Quasi-Newton Neural Network
点击次数:
论文类型:会议论文
发表时间:2009-04-11
收录刊物:EI、CPCI-S、SCIE、Scopus
卷号:3
页面范围:305-308
关键字:Traffic flow prediction; quasi-Newton (QN) methods; computing parallelism; neural network
摘要:Identifying and predicting the situation of traffic flow play an important role in traveler information broadcast and real-time traffic control. In this paper, a short-term traffic flow prediction model based on the parallel self-scaling quasi-Newton (SSPQN) neural network is presented. In this method, a set of parallel search directions are generated at the beginning of each iteration. Each of these directions is selectively chosen from a representative class of quasi-Newton (QN) methods. Inexact line searches are then carried out to estimate the minimum point along each search direction. Experimental and analytical results demonstrate the feasibility of applying SSPQN to traffic flow prediction and prove that it can better satisfy real-time demand of traffic flow prediction.