个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:计算机科学与技术学院
办公地点:大连理工大学创新园大厦8-A0824
联系方式:18641168567
电子邮箱:gztan@dlut.edu.cn
A dish parallel BP for traffic flow forecasting
点击次数:
论文类型:会议论文
发表时间:2007-12-15
收录刊物:EI、CPCI-S、Scopus
页面范围:546-549
摘要:Reducing training time for artificial neural network (ANN) when training large samples is an active area of research. The back propagation (BP) is wildly used in Short-term Traffic Flow Forecasting which requires the training set Size be much larger than the network size. In order to improve training speed, Data parallelism is a good idea. A novel data parallel RP based on dish network is proposed in this paper. Theoretical and experimental evidence prove that the dish data parallel BP reduce the communication cost compared with the traditional one. Meanwhile, by using the real traffic flow data of DaLian city, experiments show that this dish data parallel BP improves the training speed and enhances speed-zip radio.